Video super-resolution is one of the most popular tasks on mobile devices, being widely used for an automatic improvement of low-bitrate and low-resolution video streams. While numerous solutions have been proposed for this problem, they are usually quite computationally demanding, demonstrating low FPS rates and power efficiency on mobile devices. In this Mobile AI challenge, we address this problem and propose the participants to design an end-to-end real-time video super-resolution solution for mobile NPUs optimized for low energy consumption. The participants were provided with the REDS training dataset containing video sequences for a 4X video upscaling task. The runtime and power efficiency of all models was evaluated on the powerful MediaTek Dimensity 9000 platform with a dedicated AI processing unit capable of accelerating floating-point and quantized neural networks. All proposed solutions are fully compatible with the above NPU, demonstrating an up to 500 FPS rate and 0.2 [Watt / 30 FPS] power consumption. A detailed description of all models developed in the challenge is provided in this paper.
translated by 谷歌翻译
在本文中,研究了无线网络的联合学习(FL)。在每个通信回合中,选择一部分设备以有限的时间和能量参与聚合。为了最大程度地减少收敛时间,在基于Stackelberg游戏的框架中共同考虑了全球损失和延迟。具体而言,在Leader级别上,将基于信息的设备选择(AOI)选择为全球损失最小化问题,而子渠道分配,计算资源分配和功率分配在追随者级别被视为延迟最小化问题。通过将追随者级别的问题分为两个子问题,追随者的最佳响应是通过基于单调优化的资源分配算法和基于匹配的子渠道分配算法获得的。通过得出收敛速率的上限,重新制定了领导者级别的问题,然后提出了基于列表的设备选择算法来实现Stackelberg平衡。仿真结果表明,所提出的设备选择方案在全球损失方面优于其他方案,而开发的算法可以显着降低计算和通信的时间消耗。
translated by 谷歌翻译
基于DNN的视频对象检测(VOD)为自动驾驶和视频监视行业提供了重要的重要性和有希望的机会。但是,由于其实用性,可行性和强大的攻击效果,对抗贴片攻击在现场视觉任务中产生了巨大的关注。这项工作提出了Themis,这是一种软件/硬件系统,可防止对抗贴片,以实时稳健的视频对象检测。我们观察到,对抗斑块在具有非稳定预测的小区域中表现出极为局部的表面特征,因此提出了对抗区域检测算法,以消除对抗性效应。Themis还提出了一种系统的设计,以通过消除冗余计算和记忆运输来有效地支持该算法。实验结果表明,提出的方法可以有效地从可忽略的硬件开销中从对抗性攻击中恢复系统。
translated by 谷歌翻译
当与分支和界限结合使用时,结合的传播方法是正式验证深神经网络(例如正确性,鲁棒性和安全性)的最有效方法之一。但是,现有作品无法处理在传统求解器中广泛接受的切割平面限制的一般形式,这对于通过凸出凸松弛的加强验证者至关重要。在本文中,我们概括了结合的传播程序,以允许添加任意切割平面的约束,包括涉及放宽整数变量的限制,这些变量未出现在现有的结合传播公式中。我们的广义结合传播方法GCP-crown为应用一般切割平面方法}开辟了一个机会进行神经网络验证,同时受益于结合传播方法的效率和GPU加速。作为案例研究,我们研究了由现成的混合整数编程(MIP)求解器生成的切割平面的使用。我们发现,MIP求解器可以生成高质量的切割平面,以使用我们的新配方来增强基于界限的验证者。由于以分支为重点的绑定传播程序和切削平面的MIP求解器可以使用不同类型的硬件(GPU和CPU)并行运行,因此它们的组合可以迅速探索大量具有强切割平面的分支,从而导致强大的分支验证性能。实验表明,与VNN-Comp 2021中最佳工具相比,我们的方法是第一个可以完全求解椭圆形的基准并验证椭圆21基准的两倍的验证者,并且在oval21基准测试中的最佳工具也明显超过了最先进的验证器。广泛的基准。 GCP-Crown是$ \ alpha $,$ \ beta $ -Crown验证者,VNN-COMP 2022获奖者的一部分。代码可在http://papercode.cc/gcp-crown上获得
translated by 谷歌翻译
地下模拟使用计算模型来预测流体(例如油,水,气体)通过多孔介质的流动。这些模拟在工业应用(例如石油生产)中至关重要,在这些应用中,需要快速,准确的模型来进行高级决策,例如,进行井安置优化和现场开发计划。经典的有限差数数值模拟器需要大量的计算资源来对大规模现实世界的水库进行建模。另外,通过依靠近似物理模型,流线模拟器和数据驱动的替代模型在计算上更有效,但是它们不足以在大规模上对复杂的储层动力学进行建模。在这里,我们介绍了混合图网络模拟器(HGNS),这是一个数据驱动的替代模型,用于学习3D地下流体流的储层模拟。为了模拟局部和全球尺度上的复杂储层动力学,HGN由地下图神经网络(SGNN)组成,以建模流体流的演化和3D-U-NET,以建模压力的演变。 HGNS能够扩展到每个时间步长数百万个单元的网格,比以前的替代模型高两个数量级,并且可以准确地预测流体流量数十亿个时间步长(未来几年)。使用带有110万个单元的行业标准地下流数据集(SPE-10),我们证明HGNS能够将推理时间降低到与标准地下模拟器相比,最高18次,并且通过降低基于学习的模型,它可以优于其他基于学习的模型长期预测错误高达21%。
translated by 谷歌翻译
在输入图像的限制区域中工艺像素的对抗贴片攻击在物理环境中表明了它们在物理环境中的强大攻击效果。现有的认证防御对逆势补丁攻击的攻击良好,如MNIST和CIFAR-10数据集,但在图像上的更高分辨率图像上达到非常差的认证准确性。迫切需要在行业级更大的图像中针对这种实际和有害的攻击设计强大和有效的防御。在这项工作中,我们提出了认证的国防方法,以实现高分辨率图像的高可规范稳健性,并且在很大程度上提高了真正采用认证国防的实用性。我们的工作的基本洞察力是对抗性补丁打算利用局部表面的重要神经元(SIN)来操纵预测结果。因此,我们利用基于SIN的DNN压缩技术来通过减少搜索开销和过滤预测噪声的对抗区域来显着提高认证准确性。我们的实验结果表明,认证准确性从想象成数据集中的36.3%(最先进的认证检测)增加到60.4%,在很大程度上推动了实际使用的认证防御。
translated by 谷歌翻译
基于基于不完整的神经网络验证如冠的绑定传播非常有效,可以显着加速基于神经网络的分支和绑定(BAB)。然而,绑定的传播不能完全处理由昂贵的线性编程(LP)求解器的BAB常规引入的神经元分割限制,导致界限和损伤验证效率。在这项工作中,我们开发了一种基于$ \ beta $ -cra所做的,一种基于新的绑定传播方法,可以通过从原始或双空间构造的可优化参数$ \ beta $完全编码神经元分割。当在中间层中联合优化时,$ \ Beta $ -CROWN通常会产生比具有神经元分裂约束的典型LP验证更好的界限,同时像GPU上的皇冠一样高效且并行化。适用于完全稳健的验证基准,使用BAB的$ \ Beta $ -CROWN比基于LP的BAB方法快三个数量级,并且比所有现有方法更快,同时产生较低的超时率。通过早期终止BAB,我们的方法也可用于有效的不完整验证。与强大的不完整验证者相比,我们始终如一地在许多设置中获得更高的验证准确性,包括基于凸屏障破碎技术的验证技术。与最严重但非常昂贵的Semidefinite编程(SDP)的不完整验证者相比,我们获得了更高的验证精度,验证时间较少三个级。我们的算法授权$ \ alpha,\ \β$ -craft(Alpha-Beta-Crown)验证者,VNN-Comp 2021中的获胜工具。我们的代码可在http://papercode.cc/betacrown提供
translated by 谷歌翻译
In heterogeneous networks (HetNets), the overlap of small cells and the macro cell causes severe cross-tier interference. Although there exist some approaches to address this problem, they usually require global channel state information, which is hard to obtain in practice, and get the sub-optimal power allocation policy with high computational complexity. To overcome these limitations, we propose a multi-agent deep reinforcement learning (MADRL) based power control scheme for the HetNet, where each access point makes power control decisions independently based on local information. To promote cooperation among agents, we develop a penalty-based Q learning (PQL) algorithm for MADRL systems. By introducing regularization terms in the loss function, each agent tends to choose an experienced action with high reward when revisiting a state, and thus the policy updating speed slows down. In this way, an agent's policy can be learned by other agents more easily, resulting in a more efficient collaboration process. We then implement the proposed PQL in the considered HetNet and compare it with other distributed-training-and-execution (DTE) algorithms. Simulation results show that our proposed PQL can learn the desired power control policy from a dynamic environment where the locations of users change episodically and outperform existing DTE MADRL algorithms.
translated by 谷歌翻译
在没有解密的情况下对加密数据进行神经网络推断是一种流行的方法,可以使隐私神经网络(PNET)作为服务。与用于机器学习的常规神经网络相比,PNET需要额外的编码,例如量化精确数字和多项式激活。加密输入还引入了新颖的挑战,例如对抗性鲁棒性和安全性。据我们所知,我们是第一个研究问题,包括(i)PNET是否比常规神经网络对对抗性输入更强大? (ii)如何在没有解密的情况下设计强大的PNET?我们建议使用PNET攻击来生成黑框对抗示例,这些示例可以成功攻击目标和非目标方式。攻击结果表明,需要改进针对对抗输入的PNET鲁棒性。这不是一项琐碎的任务,因为PNET模型所有者无法访问输入值的明文,这阻止了现有检测和防御方法的应用,例如输入调整,模型归一化和对抗性培训。为了应对这一挑战,我们提出了一种新的快速准确的噪声插入方法,称为RPNET,以设计强大的私人神经网络。我们的综合实验表明,PNET-ITSTACK比先前的工作减少了至少$ 2.5 \ times $的查询。我们从理论上分析了我们的RPNET方法,并证明RPNET可以降低$ \ sim 91.88 \%$ $攻击成功率。
translated by 谷歌翻译
瞬态现象在多个尺度上协调大脑活性方面起着关键作用,但是,它们的潜在机制在很大程度上仍然未知。因此,神经数据科学的一个关键挑战是表征这些事件期间的网络交互。使用结构性因果模型的形式主义及其图形表示,我们研究了基于信息理论的理论和经验特性,基于信息理论的因果力量测量在反复自发的瞬态事件的背景下。在这种环境中显示了转移熵和动态因果强度的局限性之后,我们引入了一种新颖的度量,相对动态的因果强度,并为其益处提供了理论和经验支持。这些方法应用于模拟和实验记录的神经时间序列,并与我们当前对潜在脑电路的理解相吻合。
translated by 谷歌翻译